Recursions for Characteristic Numbers of Genus One Plane Curves

نویسنده

  • RAVI VAKIL
چکیده

Characteristic numbers of families of maps of nodal curves to P are de ned as intersection of natural divisor classes. (This de nition agrees with the usual de nition for families of plane curves.) Simple recursions for characteristic numbers of genus one plane curves of all degrees are computed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enumerative Geometry of Plane Curves of Low Genus

We collect various known results (about plane curves and the moduli space of stable maps) to derive new recursive formulas enumerating low genus plane curves of any degree with various behaviors. Recursive formulas are given for the characteristic numbers of rational plane curves, elliptic plane curves, and elliptic plane curves with fixed complex structure. Recursions are also given for the nu...

متن کامل

Intersections of Tautological Classes on Blowups of Moduli Spaces of Genus-One Curves

We give two recursions for computing top intersections of tautological classes on blowups of moduli spaces of genus-one curves. One of these recursions is analogous to the well-known string equation. As shown in previous papers, these numbers are useful for computing genusone enumerative invariants of projective spaces and Gromov-Witten invariants of complete intersections.

متن کامل

Characteristic numbers of rational curves with cusp or prescribed triple contact Joachim Kock

This note pursues the techniques of modified psi classes on the stack of stable maps (cf. [Graber-Kock-Pandharipande]) to give concise solutions to the characteristic number problem of rational curves in P2 or P1×P1 with a cusp or a prescribed triple contact. The classes of such loci are computed in terms of modified psi classes, diagonal classes, and certain codimension-2 boundary classes. Via...

متن کامل

The Gromov-witten Potential of a Point, Hurwitz Numbers, and Hodge Integrals

Hurwitz numbers, which count certain covers of the projective line (or, equivalently, factorizations of permutations into transpositions), have been extensively studied for over a century. The Gromov-Witten potential F of a point, the generating series for Hodge integrals on the moduli space of curves, has been a central object of study in Gromov-Witten theory. We define a slightly enriched Gro...

متن کامل

Towards Large Genus Asymptotics of Intersection Numbers on Moduli Spaces of Curves

We explicitly compute the diverging factor in the large genus asymptotics of the Weil-Petersson volumes of the moduli spaces of n-pointed complex algebraic curves. Modulo a universal multiplicative constant we prove the existence of a complete asymptotic expansion of the Weil-Petersson volumes in the inverse powers of the genus with coefficients that are polynomials in n. This is done by analyz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998